
OA 3302
Winter 2003

Computer Lab 1: Introduction to Simkit: The Arrival Process

Objectives

• Implement simple Event Graph in Simkit
• Learn about SimEntityBase class
• Learn methods of Schedule to initialize and start simulation
• Generate random variates using RandomFactory and RandomVariate
• waitDelay() method of SimEntityBase
• Schedule.setVerbose() method
• Schedule.stopAtTime() method
• Schedule.reset() method
• Schedule.startSimulation() method

The Arrival Process

The discrete-event simulation model of an arrival process specifies a single state, the cumulative
number of arrivals, and one event, an arrival, with times between arrivals either deterministic or random.
The Event Graph is shown in Figure 1, where represents successive times between arrivals. Recall that
the Run event is the only event in an Event Graph that does not have to be scheduled by another event, but
is put on the Event List at time 0.0.

Figure 1. The Arrival Process Event Graph
To implement the arrival process using Simkit, perform the following steps:

1. Subclass SimEntityBase
2. Define state variables and instance variables
3. Define event methods
4. Write a main method to test

First implement the arrival process with interarrival times constant at 1.1.

Define a subclass of SimEntityBase called (imaginatively) ArrivalProcess; be sure to
put it in your oa3302 package. The SimEntityBase class is in the simkit package, so the contents
of your file called ArrivalProcess.java (in subdirectory oa3302) should have (at this point) the
following code1:

1. The code in this handout will not show comments; your program, of course, should be commented
according to the OA/OR Programming Standards.

tA

Run Arrival

tA
tA

{N++}{N = 0}

2

package oa3302;
import simkit.*;
public class ArrivalProcess extends SimEntityBase {
}

You should now try compiling and running your program. Of course, the program doesn't do any-
thing yet, and without a main method, it will not execute at all. Note that you will be responsible for add-
ing comments and features necessary to bring your code into OA3302 Standards compliance. Pop Quiz:
what can you conclude about SimEntityBase’s constructors given that the above code does indeed
compile?

The next step is to define the “event” methods. Simkit is designed so that if you have an Event
Graph of your model it is very straightforward to write the code. For starters, every event in the Event
Graph corresponds to an instance method in your class that is prefaced with ‘do’.1 The Event Graph in
Figure 1 has two events, Run and Arrival, so you need to define two instance methods doRun() and
doArrival(). They should be public and have return type void (i.e. no return). Just define the
methods with an empty body for now; you will implement them later. Recompile after defining these two
methods.

Now define your state variables—in this case, just a single state variable. Each state variable in an
Event Graph is implemented as an instance variable in a Simkit model. In order to cut down on clutter,
Event Graphs tend to use state variables with short names—N for the cumulative number of arrivals in this
case. Computer programs, on the other hand, should have variable (and method) names that are as self-
documenting as possible. Therefore, your instance variable should be called something like ‘numberAr-
rivals.’ (What type do you suppose it should be?) State variables should be declared protected and
have getter methods, but not setter methods.

You can now put in the state transitions for the doArrival() methods; simply read it off the
Event Graph in Figure 1. The “state transition” for the Run event occurs in a method called reset() in
Simkit models:

public void reset() {
numberArrivals = 0;

}

The final steps in implementing the Arrival Process are to write the code corresponding to the
scheduling edges. Each scheduling edge in a Simkit program is implemented by a call to waitDelay()
method. There will be two steps (for simplicity). First, make the delays between arrivals have constant
value of 1.1. The waitDelay() call will have signature (String, double)—the first argument is
the name of the Event (without the ‘do’), and the second is the delay on that scheduling edge. Your
doArrival() method should now look like this (Your doRun() method should be similar - be care-
ful to implement is as in the Event Graph model shown in Figure 1.):

public void doArrival() {
 numberArrivals++;
 waitDelay(“Arrival”, 1.1);
}

At this point you have a complete Simkit model (although it does not yet have all the desired fea-
tures) so you can put in code to produce some output. You will, of course, need a main() method. The
main method needs to perform several tasks: (1) Instantiate an ArrivalProcess; (2) Set the stopping
condition; (3) Possibly set other attributes for the simulation run2; and (4) Start the simulation.

1. Your class must be a subclass of SimEntityBase for this to work.
2. For this program, the preference is “verbose” mode, in which the current event and the Event List are

printed out after every event.

3

1. Instantiate an ArrivalProcess: Define a local variable of type ArrivalProcess and ‘new’
it using the zero-parameter constructor.

2. Set the stopping condition: Invoke a class method of Schedule called stopAtTime(double).
The parameter is the simulated time at which the model will stop.

3. Set verbose mode: Another static method of Schedule is setVerbose(boolean); the
parameter tells the model whether or not it is to show the Event List after every event is exe-
cuted.

4. Start the simulation: Invoke the following two methods method of Schedule : reset() and
startSimulation() .1

5. Output a report: After the line invoking startSimulation(), write a println() state-
ment to output the number of arrivals during the sun.

When you compile and execute your model with a stopping time of 5.0, you should get the follow-
ing output:

** Event List -- Starting Simulation **
0.000 Run
5.000 Stop
 ** End of Event List -- Starting Simulation **
Time: 0.000 Current Event: Run [1]
 ** Event List -- **
1.100 Arrival
5.000 Stop
 ** End of Event List -- **
Time: 1.100 Current Event: Arrival [1]
 ** Event List -- **
2.200 Arrival
5.000 Stop
 ** End of Event List -- **
Time: 2.200 Current Event: Arrival [2]
 ** Event List -- **
3.300 Arrival
5.000 Stop
 ** End of Event List -- **
Time: 3.300 Current Event: Arrival [3]
 ** Event List -- **
4.400 Arrival
5.000 Stop
 ** End of Event List -- **
Time: 4.400 Current Event: Arrival [4]
 ** Event List -- **
5.000 Stop
5.500 Arrival
 ** End of Event List -- **
Time: 5.000 Current Event: Stop [1]
 ** Event List -- **
 << empty >>
 ** End of Event List -- **

1. That is:
Schedule.reset();
Schedule.startSimulation();

4

At time 5.0 there have been 4 arrivals

Now that the basic events are working, you need to model random interarrival times. Simkit uses a
class called simkit.random.RandomVariate1 that generates random variates with its gener-
ate() method.

First give your constructor signature (RandomVariate) , representing the interarrival times for
the arrival process. Next, declare an instance variable of type RandomVariate called arrival-
TimeGenerator. Since arrivalTimeGenerator is a parameter, it has both a setter and a getter. To
use the interarrival times generated, change the second argument in your two waitDelay() calls to be:

waitDelay(“Arrival”, arrivalTimeGenerator.generate());

Now modify your main method to create and use an instance of RandomVariate that are iid expo-
nential(3.2) random variables. Use RandomVariateFactory for this as follows:

String distribution = "Exponential";
Object[] param = new Object[1];
param[0] = new Double(3.2);
RandomVariate rv = RandomVariateFactory.getInstance(distribution, param);

Pass this instance of RandomVariate to the constructor of ArrivalProcess. Using a stopping time of
15.0, you should get the following output:

** Event List -- Starting Simulation **
0.000 Run
15.000 Stop
 ** End of Event List -- Starting Simulation **

Time: 0.000 Current Event: Run [1]
 ** Event List -- **
0.251 Arrival
15.000 Stop
 ** End of Event List -- **

Time: 0.251 Current Event: Arrival [1]
 ** Event List -- **
5.769 Arrival
15.000 Stop
 ** End of Event List -- **

Time: 5.769 Current Event: Arrival [2]
 ** Event List -- **
10.299 Arrival
15.000 Stop
 ** End of Event List -- **

Time: 10.299 Current Event: Arrival [3]
 ** Event List -- **
10.376 Arrival
15.000 Stop
 ** End of Event List -- **

Time: 10.376 Current Event: Arrival [4]

1. Actually RandomVariate an interface.

5

 ** Event List -- **
14.857 Arrival
15.000 Stop
 ** End of Event List -- **

Time: 14.857 Current Event: Arrival [5]
 ** Event List -- **
15.000 Stop
15.371 Arrival
 ** End of Event List -- **

Time: 15.000 Current Event: Stop [1]
 ** Event List -- **
 << empty >>
 ** End of Event List -- **

At time 15.0 there have been 5 arrivals

Finally

Two more additions need to be made to complete the model for this lab. First, the state transition
in doArrival() should be changed to the following (note the location of ‘++’):

firePropertyChange("arrival", numberArrivals, ++numberArrivals);

Then add the following code to your main method after the ArrivalProcess is instantiated:

SimplePropertyDumper dumper = new SimplePropertyDumper();
arrival.addPropertyChangeListener(dumper);

The result should be:

** Event List -- Starting Simulation **
0.000 Run
15.000 Stop
 ** End of Event List -- Starting Simulation **

Time: 0.000 Current Event: Run [1]
 ** Event List -- **
0.251 Arrival
15.000 Stop
 ** End of Event List -- **

arrival: 0 => 1
Time: 0.251 Current Event: Arrival [1]
 ** Event List -- **
5.769 Arrival
15.000 Stop
 ** End of Event List -- **

arrival: 1 => 2
Time: 5.769 Current Event: Arrival [2]
 ** Event List -- **
10.299 Arrival
15.000 Stop
 ** End of Event List -- **

6

arrival: 2 => 3
Time: 10.299 Current Event: Arrival [3]
 ** Event List -- **
10.376 Arrival
15.000 Stop
 ** End of Event List -- **

arrival: 3 => 4
Time: 10.376 Current Event: Arrival [4]
 ** Event List -- **
14.857 Arrival
15.000 Stop
 ** End of Event List -- **

arrival: 4 => 5
Time: 14.857 Current Event: Arrival [5]
 ** Event List -- **
15.000 Stop
15.371 Arrival
 ** End of Event List -- **

Time: 15.000 Current Event: Stop [1]
 ** Event List -- **
 << empty >>
 ** End of Event List -- **

At time 15.0 there have been 5 arrivals

Note the lines indicating state transitions for the arrival state variable that appear just before
each Event List snapshot.

Deliverables

Turn in a hard copies of your program and of your output, which should be identical to the above.
Be sure to follow the OA3302 programming standards in your code.

Frequently Asked Questions

Why do I need a doRun() method?
Every simulation model needs to be initialized by putting at least one event on the event list at the

beginning. Run is the one special event name that is always put on the event list. You create a Run event by
writing a doRun() method.

Does every SimEntityBase have to have a doRun() method?

No. If a (subclass of) SimEntityBase does not define a doRun() method then its events must
be scheduled by some other SimEntityBase. You should generally have at least one doRun() method
in your model. In next week’s lab you will write a class that does not need a doRun() method.

What happens if I don't put a doRun() in my model?
Nothing. Literally. Try it and see.

7

How does Simkit know to put the doRun() method on the Event List?
It uses a technique called reflection. You can read about reflection in your Java book, but you do

not need to understand reflection to write effective models in Simkit.

Do I have to use waitDelay()? Why can't I invoke doRun() or doArrival() directly?
You should never directly invoke a ‘do’ method yourself, but should always use waitDelay().

The reason is that there is bookkeeping that must be done about which events have occurred and which
events are scheduled to occur. Directly invoking a ‘do’ method circumvents this bookkeeping and will
cause your model to behave strangely.

What is the purpose of the reset() method?

The primary purpose of reset() is to restore the state variables to their initial values. The cur-
rent lab does not use reset(). However, when you start doing multiple simulation runs, you will need to
use reset().

My program compiles and runs, but after the first Arrival the Event List is empty. What gives?
You are probably mis-spelling “Arrival” in the waitDelay() in doRun(). Check to make

sure that you have spelled it correctly, including capitalization; if you see ‘arrival’ on the Event list,
then you have not capitalized it in your waitDelay() method. The same goes for the waitDelay() in
doArrival().

Why doesn't numberArrivals have a setter method?

The value of numberArrivals should be determined by the simulation model, not arbitrarily set by
the program. At any time, the value of numberArrivals should be exactly equal to the number of
Arrival events that have occurred. In general, state variables should not be given public setter methods,
since their values are determined by what has occurred in the simulation.

Why can’t I just use ‘new’ to instantiate the RandomVariate?
Try it and see what happens. As it turns out, you will not be able to instantiate a RandomVari-

ate because of the way it is designed. As you will see with future models, the use of RandomFactory
to get a RandomVariate is very flexible and powerful; for now, you’ll just have to take my word for it.

What are those numbers in brackets next to the events on the Event List?

The numbers in brackets count the number of times each type of event has occurred in the current
simulation run.

